4.4 Forces conservatives

- Une force est dite conservative si son travail entre deux points ne dépend pas du
chemin suivi (mais uniguement de la position des deux points)

V(@) V est le gradient
Une telle force F dérive 0x - [9/0x
S : , . F=—|ov® | =-YWv® V=|0d/dy
d’une énergie potentielle V(7 ) tel que: 5 3707
oV (r)
0z
La variation infinitésimale de f(7) est:
. Dans ce cas, on a: df () = ?zlj—;dxi = V(@) - dif
2 2 6V/6x 2
w,, =f F-d?zj _(av/ay |- a7 = —j V@R = V) —VE) = K, —K,
1 1 aV oz 1

donc: V(@) +K,=V(,) +K,

Théoreme de I'énergie mécanique:

Pour des forces conservatives, I’énergie mécanique E | | 7 — K V() = constante
(énergie cinétigue + énergie potentielle)

est conservée
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4.4 EX.: travall de la force de pesanteur

(ou, plus généralement, d’une force constante) @

trajectoire

2 2
WlZ:J mﬁ-d?zf —mge, - dr
1 1

=

Z @ m

2
= f -mgdz = —mgz |j =mgz, —mgz,
1

trajectoire A

[
»
}/;

=D

W,=V(z)-V(0) < V(z)=mgz

- Le travail ne dépend que des coordonnees z, et z, des points D et :
Il ne dépend pas de la trajectoire suivie entre ces deux points

- Le travail de la force de pesanteur est nul le long d’une trajectoire fermée quelconque:

2 1
Wi = | mg-di+ | mgdi =mgla,— 2) + mg(a, — 2) = 0
1 2

. On écrit; jgﬁ-d'F=O

démo: travail dans champs gravitationnel-635 20



https://auditoires-physique.epfl.ch/experiment/635/independance-du-travail-gravitationnel-dune-force-le-long-dun-parcours

4.4 EX.: Travail de la force de rappel d’un ressort

F=—kAZ = —kzé,
m

X X
- -
W0x=fF'd’r=j_kxdx
0 0
k kex? | ) 1 k2 i
~z -T2 R i /
2 0 2 |
O / p

W, =V(0)-V(x) < V()= %kxz

4.4 Ex.: Travail d’une force centrale en 1/712

(par ex.: force de gravitation. G =6.67 1011 N m? / kg? est la constante universelle de gravitation)

2, 2 GmM _ |
W12=JF-dr=f— 2 e, dr
1 1
2 GmM GmM GmM GmM
= f —_ > dr = —(— ) |1 = — +

GmM @

r
22
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4.4 Energie potentielle

- L’¢énergie potentielle est définie a une constante arbitraire pres

- Elle représente le travail que la force doit fournir pour amener le point matériel (avec
vitesse nulle) a une position de référence arbitraire 7, (ou V(7,) = 0 par définition):

.rfwﬁzvﬁﬁ—VG%:AKﬂ

0

Exemple de force :

Ressort :
Pesanteur :

Gravitation :

Centrale :

Frottement :

= —kzx
F = mg = —mgé€,
F=—(GMm/r?)é,
F=F(r)é,
F=—f(v)d

Energie potentielle associée :

V =3k +C

V =mgz+C
V——GMm/'r+0
V=—/[ F(r'dr'+C

aucune (force non conservative)

23



4.4 Forces conservatives

Force conservative:

- force F dont le travail ne dépend que des points de depart et d’arrivée (quels que
soient ces points), et non de la trajectoire entre les deux

- Propriétés:

La force F= F(7) est conservative

)

Il existe une fonction V(7) (énergie
potentielle) telle que F(#) = —VV (#)

g

% F-di=0 V courbe fermée

)

Il existe une fonction V(7) telle que
r
j F-di=V(@#,) -V(@) = -V
r

° )

e champ de force F(#) est irrotationnel <

F® =-VAF@) =0,V7#

Notations d’analyse vectorielle :

Operateur . 0/ 0z
Nabla: V=| 0/0y
0/0z

Gradient:  grad V(7) = VV (7)

Rotationel : rot F'(7) = V A F(7)



4.5 Théeoreme de I’énergie

Point matériel soumis a:

- des forces conservatives F¢ = Y, F, = ¥, —VV,.(¥) = =VV (¥)
- des forces non conservatives de résultante FN¢ = ¥, FN¢
Travaille des forces

2 2
W,, = f (FC 4 FNOY . dit = V(7)) — V() + f FNC . d7

2
1 1 >
= V() - V() + j FYC. g7 = K, — K,
1

2
Wy, = f (FC 4+ FNCY . dit = K, — K,
1

2
Entre lespoints 1 et 2, ona:  WHE = J FNC.d7 = K,

K, -V(@#) +V(#,) =E,—E,
1

o Théoreme de I'énergi_e
Wi =E,—E, La variation de I’énergie mécanique est égale
au travail des forces non-conservatives
_ _ Conservation de
- si toutes les forces sont conservatives: | £ = constante I’énergie mécanique

démo: bille dans saladier
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4.5 Ex.: Lugeur

Un lugeur part au repos au point 1 :
quelle est sa vitesse au point 2? @ 4

Point de départ1: z; = h,,v; =0 hO |

E,=mgz, + Emvf = mgh,

Point d’arrivee 2 : z, = 0, v, =?

E,=mgz, + —mvs = —mv3

v

1 1 Z
2 2 0

- Théoreme de I’énergie :

2 2
EZ—E1=W1’\£C=jI3 t-df’:j—ﬁ ds = —mgu,cos a o

. fro . frot c sin a
Smvi —mgh, = —mgp,cosa—— =  —vi=ghy= gu —~—

V2 = \/Zgho (1 B tal:a)

Pente suffisante pour luger si : tana > u,

26



4.5 Ex.: Lugeur

- Apres avoir depassé le point 2, le lugeur
remonte la pente d’en face: quelle est la @ 4
hauteur qu’il atteint?

Point de départ1:z; = hy,v; =0

E,=mgz, + Emv% = mgh,

Point d’arrivee 3: z, = h?,v3; =0

E,=mgz, + Emv% = mgh

- Théoreme de I’énergie :

3 2

3

. , , h h
E,—E, =Wt = L Fpro»dr = L —F 0 ds + L —F . ds = —mgpu, cos@——— — mgp. cos b ——
mgh — mgh, = —mgu,_cos a o —mgu,cosb i —_ h(1+ at ):h(1— He )
0 ‘ sin ‘ sin 6 tan 6 0 tan

27
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4 ] 5 EX. _ Canon a Vi de Demo: canon a vide https://auditoires-

physique.epfl.ch/experiment/609

. 5 Cylindre de rayon R et longueur L.
atm 1 vide ) Une balle de ping pong a I’extrémité (1) et accelérée par la
pression atmosphérique vers I’extrémité (2)

Que se passe-t-il entre la canette
et la balle de ping pong?

1) La balle rebondit avec la
canette presque indéformée

2) La balle déforme la canette
et les deux se collent I’une a
I'autre.

3) La canette est coupée en
deux

28
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4 ] 5 EX. : Canon é Vi de Demo: canon a vide https://auditoires-

physique.epfl.ch/experiment/609

. 5 Cylindre de rayon R et longueur L.
atm 1 vide > Une balle de ping pong a I’extrémité (1) et accelérée par la
pression atmosphérique vers I’extrémité (2)

O

DY

Mouvementselon ¥ = N etmg ne travaillent pas (perpendiculaires au déplacement)

2
Fatm = TR*Pgem® Watm = J ﬁatm - dif = TR?Poym L
1
Theoreme de I'énergie cinetique:
2
Watm = T[RzpatmL =K, —K; = %mvz -0 = V= \/ZTCR Tl:latmL
Patm:105_2Pa’ Effet identique & une masse M qui
E—:errllo M v ~400m/s ~ 1400 Km/h tombe d’une hauteur h = 1m
=2m, )
m =3 103 Kg %mvzzMgh = Mzrzn;h~24Kg

On transforme I'énergie cinetique (balle de ping pong) ou potentiel (masse M qui tombe)
en déformation de la canette 29
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4.5 L’énergie mécanique: intégrale premiere

Si E = imwv? + V(7) est une constante, alors, par dérivation :

dV (7
0 = g (bmo? + V() = dmi (7-) + 247

o o, (VD) de | V(R dy |, OV(F) dz
= ma v+(3$ T 5y, T T at

—

—md@- T+ VV(F) 7= (ma'—ﬁ) ¥ o F=ma

On dit que I’énergie mécanique, si elle est conserveée, est une intégrale premiere des
equations du mouvement (équivalente a la loi de Newton mais seules les dérivées
premieres interviennent)

- On verra que, de maniere générale :
- les constantes du mouvement sont des intégrales premieres

- les lois de conservation donnent des équations différentielles faisant apparaitre les
dérivees premieres des variables définissant la position (plutbt que les dérivées
secondes comme dans la 2eme loi de Newton) —> solutions des problemes

(souvent) plus facile que résoudre F = m a
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4.5 Energie mécanique d’un oscillateur harmonique

1 1
mx = —kxr = mir=—kxx = i (—ma’:2) = i (—gkﬁ)

dt \ 2 dt
1 1
“mwv? + =ka? = constante
2 2 |
v v .
energie energie energie
cinétique * potentielle = mécanique totale

4.5 Energie mécanique d’un pendule
(;5— ——Sm(f) = qbqb— ——smqbqb = i (lqbQ) = i (%cosqb)

dt dt
y 1., g ., N
0 > = §¢ — 7 Cos ¢ est une constante (intégrale premiere)
v L /
’ / Donc: | “mL24? L =
7 \P e, ; im ) —mg cosqg = constante
~e_ | -7 b L g +mg(—=x) énergie potentielle
T . P 2 MY | dans le champ de
Xv F g v R 4 pesanteur
energie énergie énergie =mg x h

cinétique * potentielle = mécanique totale
1?¢? = L?w? = v? mouvement circulaire de rayon L
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4.6 Forces conservatives: équilibre et petites oscillations

energie potentielle permet de discuter le

Forces conservatives = mouvement, en particulier la stabilité des
points d’équilibre

- Situation abstraite: _ Example pratique:
Point materiel se deplacant sur un axe Bille soumise & son poids et contrainte a se
X et soumis a une force conservative déplacer (sans frottement) sur un relief.
F(x) = — dV(x))? Dans ce cas, V(x) = mgz(x) est I’énergie
dx potentielle de cette bille

DV

» énergie F(x) 5
potentielle V(x)
fonction V(x) N
/\
terrain | mg

32
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4.6 Mouvement rectiligne dans un potentiel:
discussion qualitative

démo : bille sur glissieére 392

Point de depart avec la condition

1 énergie
v(x,) =0 - K(x,) =0
\ v et K'sont maximales en ce point
E=K+V(x)

E
§ K
§ = énergie mecanique
' _ v constante (indep. de x),
\/ t déterminée par les
| nditions initial
| V(x) conditions initiales
X, z 2
F vers la "ﬁversla 5 =
droite gauche F F
Force F = —dérivée de V(x) = —pente de la courbe —
33

F = 0 aux extrema de la fonction V(x)
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4.6 Mouvement rectiligne dans un potentiel:
discussion qualitative (suite)

Cas particuliers :

Condition : - SiIE=E;:
- X = x4 constante;
K=E-V(z)>20 = E>V(z) x; = point d’équilibre (F = 0,v = 0)

= les positions x telles que
V' (x) > E sont inaccessibles - SIE=E,:

oscillations entre x, et x3;
X5, X3 . points d’arrét (v = 0)

1 énergie - .
F( 2)—-dV(x) | = — F(x3): la force F(x)
V(x) tend & ramener vers x;

deux plages en x permises, séparees par
une « barriere de potentiel »

position d’équilibre instable

/ N— enx = x, (F =0,v = 0); laforce F(x)
/ tend a éloigner de x,
x5 To T1 T3 T4 X - SIE =Es:

x > x5 ; le point matériel part a I’infini 34



4.6 Equilibre et petites oscillations

1) L’étude de I’énergie potentielle V(x) (ou de la force F (x)) permet de déterminer les points
d’équilibre, ainsi que les fréquences des petites oscillations autour des points d’equilibre stables

dV
F(z9) =0 = 0 =0 < xg est un point d’équilibre

Zo

2) Développement limité autour d’un point d’équilibre x, (pour x proche de x,):
la fonction V(X) est approximee par une parabole (développement au deuxieme ordre)
dV (x) 1d%V(x)
d.xl |x0(x_xo) +§ dxz 1
V(xo) + V' (x)(x — x0) + EV”(xO)(x - xo)z + = V(x,) + EV”(xo)(x - xo)z

V(x) = V(x,) + | O — )2t o =

On reconnait la force et I'énergie
dV (x) , , _ _ _
o =V (x) = =V"(x,)(x —x,) potentielle d’un oscillateur harmonique
de raideur k = V"' (x,)

F(x) =—

Vix) = V'(x0) + V7 (x0)(x — x5) = V" (x0)(x = X5)
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4.6 Equilibre et petites oscillations

Deux cas importants:

\_/ V" (x,) > 0

F(x) = =V"(x,)(x — x,)

ﬁ(x) ﬁ'(x) X>Xg2>X—%3>0-F(x) <0
> | < X<Xg—2>X—%<0->F(x)>0

V" (x,) <0
) F(x) =-V"(x,)(x — x,)
:BO x X>xg>x—x9>0->F(x)>0
ﬁ{x) By TS x—x<0-F() <0
F(xo) =

Equilibre stable,

garanti par une force de rappel:

Le mouvement correspond a des petites
oscillations autour du point d’équilibre de

pulsation w = \/E — /_V (x0)
m m

Equilibre instable:

La force éloigne le point matériel de la
position d’équilibre des que x # x,
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4.6 EX.: pendule rigide

Point matériel attache a une tige rigide de longueur L, soumis a son

poids mg et restant dans un plan vertical : O )7
) . el L /
Energie potentielle: V = —mgh = —mgL cos ¢ ) /
/
— /
T \P ~é4
Recherche des positions d’équilibre : Y e o
dv(p) o b = 0 i é,
W—mgLsmqb =0 :{9750:” 24 mg
- Stabilité des point d’équilibre:
dZV(¢) dZV(¢) mgL > 0 Si ¢o=0 ECIU|||bre stable
>— =mgLcos¢p = > | —h. = o _
dg dg a —mgL <0 si ¢o=m Equilibre instable



4.6 EX.: pendule rigide

Pour calculer la force autour du point d’equilibre il faut se rappeler que :

j Tﬁ AP =V(#) —V(E) = -V(@ & F=-WE

0

avec 7 coordonnée de déplacement (longueur)

Coordonnee curviligne: s = Lp = N

S
V(s) = —mgL cos¢(s) = —mgL cos

Force: F(s) = —V"(sy)(s — sp)

Pulsation des petites oscillations autour de la position d’équilibre stable

_ —0):w = /w_ g
(50—0C>¢0—0).w— - —\/:

d 0
v =2 v

. aV’(S)agb . 1 " __ " —
V' (s) = 5 = =V'@ 7 = V" (s0) V (¢o) =

m
mgL—Tg

Méme résultat obtenu en appliquant la
2¢™e |oi de Newton

38





